Stepwise Construction of Clusters Containing Ru_2PtWS_4 and $Ru_2Pt_2WS_4$ Cores by the Thermal Reaction of $[\{Cp*Ru(CO)\}_2(WS_4)]$ ($Cp*=\eta^5-C_5Me_5$) with $[PtMe_2(cod)]$ (cod=1,5-cyclooctadiene)

Masahiro Yuki, Masaaki Okazaki, and Hiroshi Ogino* Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578

(Received March 17, 1999; CL-990181)

The stepwise construction of [$\{Cp*Ru(CO)\}_2(WS_4)(PtMe_2)$] and [$\{Cp*Ru(CO)\}_2(WS_4)(PtMe_2)_2$] clusters was achieved by the thermal reaction of [$\{Cp*Ru(CO)\}_2\{W(\mu-S)_4\}$] with [$PtMe_2(cod)$].

indicate that clusters 1 and 2 are useful precursors for the synthesis of the transition-metal sulfide clusters. This paper describes the stepwise construction of tetranuclear and pentanuclear clusters by the reaction of $[\{Cp*Ru(CO)\}_2\{W(\mu-S)_i\}]$ (2) with $[PtMe_i(cod)]$ (cod = 1,5-cyclooctadiene).

A toluene solution (5 cm³) of 2 (100 mg, 0.119 mmol), which was prepared by the reaction of (NH₄)₂[WS₄] with Cp*Ru(CO)₂Cl,³ and ca. 1 equiv. [PtMe₂(cod)] (43 mg, 0.130 mmol) was heated at 80 °C for 18 h (eq 1). Volatiles were

removed from the reaction mixture under reduced pressure and

chromatographic work-up of the residue afforded two Ru₂PtWS₄ clusters **3a** and **4a** and a Ru₂Pt₂WS₄ cluster **5a** in 7%, 46%, and 5% isolated yield, respectively.⁴

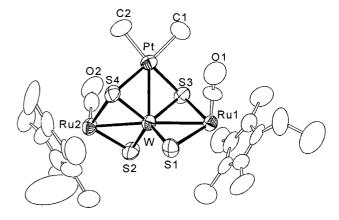
The reaction of 2 with ca. 2 equiv. [PtMe₂(cod)] was also examined (eq 2). The thermal reaction of 2 (163 mg, 0.194

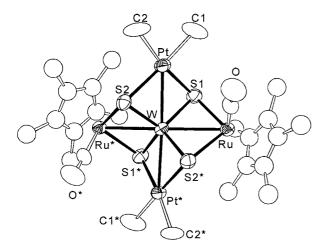
2 + 2equiv. PtMe₂(cod)
$$\frac{\text{toluene}}{80^{\circ}\text{C}, 18 \text{ h}}$$
 3a + 4a + 5a (2)

mmol) with [PtMe₂(cod)] (151 mg, 0.453 mmol) at 80 °C for 18 h led to the formation of **3a**, **4a**, and **5a** in 5%, 34%, and 52% isolated yield, respectively. In the reaction, pentanuclear cluster **5a** was obtained as a major product. The C_5Me_4Et derivatives **3b**, **4b**, and **5b** were also obtained by the reaction of $[\{(C_5Me_4Et)Ru(CO)\}_2\{W(\mu-S)_4\}]$ with [PtMe₂(cod)].

The reaction of isolated **4a** with 1.3 equiv. [PtMe₂(cod)] in C_6D_6 was carried out at 80 °C for 11 h. The ¹H NMR spectrum revealed that the resulting solution contains **4a** (26%) and **5a** (60%) and a half of [PtMe₂(cod)] remained intact. Thus, **4** is considered to be the intermediate for the formation of **5**.

Single crystals of **4b** suitable for X-ray structure analysis were obtained by recrystallization from dichloromethane-hexane. ORTEP drawing of **4b** is depicted in Figure 1.⁵ Cluster **4b**




Figure 1. ORTEP drawing of $[\{(C_5Me_4Et)Ru(CO)\}_2\{W(\mu_5-S)_2(\mu-S)_2\}(PtMe_2)]$ (4b). Selected bond lengths (Å) and angles (°); W-Pt 2.777(2), W-Ru1 2.860(2), W-Ru2 2.870(2), W-S1 2.210(6), W-S2 2.199(6), W-S3 2.252(6), W-S4 2.245(6), Pt-S3 2.352(6), Pt-S4 2.364(7), Ru1-S1 2.404(6), Ru1-S3 2.370(6), Ru2-S2 2.391(7), Ru2-S4 2.386(7), S3-Pt-S4 102.2(2), S3-Pt-C2 166.4(8), S4-Pt-C1 164.1(8), C1-Pt-C2 84(1).

consists of two $(C_5Me_4Et)Ru(CO)$ fragments and one PtMe₂ fragment which are connected by a tetrathiotungstate ligand. The structure of **4b** is similar to that of $[\{Cp*Ru(CO)\}_2\{W(\mu_3-S)_2(\mu-S)_2\}\{W(CO)_4\}]$ (**B**), but the latter has a $W(CO)_4$ fragment instead of a PtMe₂ fragment. Two of four S atoms in $[WS_4]^{2-}$ (S1, S2)

650 Chemistry Letters 1999

bridge one W atom and one Ru atom in a μ₂-fashion. The others (S3, S4) bridge three metals W, Ru, and Pt in a μ₃-fashion. The Pt metal center with two methyl and two sulfide ligands adopts a square planar geometry. The metal-metal bond lengths (W-Pt 2.777(2), W-Ru1 2.860(2), W-Ru2 2.870(2) Å) lie in the normal range expected for each metal-metal single bond length.⁶ The elemental analysis and mass spectral data established that 3a and 4a has the same formula $\{Cp*Ru(CO)\}_2(WS_4)(PtMe_2)$. Spectroscopic features of 3a are quite similar to those of 4a. The ¹H NMR spectra of 3a and 4a show two kinds of singlet, which are assignable to chemically equivalent two Cp* ligands and two methyl groups connected to a Pt center. The IR spectrum of each cluster exhibits a CO stretching absorption band in the terminal CO region. The structure of 3a is tentatively assigned to $[{Cp*Ru(CO)}_2{W(\mu_3-S)_3(=S)}(PtMe_2)]$ which corresponds to A.

Structure of 5a was determined as shown in Figure 2.7

Figure 2. ORTEP drawing of $[\{Cp*Ru(CO)\}_2\{W(\mu_3-S)_4\}(PtMe_2)_2]$ (**5a**). Selected bond lengths (Å) and angles (°); W-Pt 2.7835(7), W-Ru 2.872(2), W-S1 2.241(5), W-S2 2.246(5), Pt-S1 2.350(5), Pt-S2 2.375(5), Ru-S1 2.400(5), Ru-S2* 2.412(5), S1-Pt-S2 101.3(2), S1-Pt-C2 170.9(7), S2-Pt-C1 171.5(7), C1-Pt-C2 85(1).

Cluster 5a possesses C_2 axis on the W atom and contains two Cp*Ru(CO) fragments and two $PtMe_2$ fragments which are connected by a tetrathiotungstate ligand. Each of four S atoms bridges three metals W, Ru, and Pt. The Pt(II) metal center with two methyl and two S ligands adopts a square planar geometry. The distances of W-Pt (2.7835(7) Å) and W-Ru (2.872(2) Å) bonds are almost the same as those of 4b.

Newman projections of 4a and 5a along the Ru-W-Ru axis

Figure 3. Newman projections of 4a, 5a, and conformer C.

are depicted in Figure 3. In cluster 4a, the PtMe₂ fragment occupies the position between the CO ligand on the front Ru atom and that on the rear Ru atom to minimize the steric interaction between PtMe₂, CO, and Cp* groups. The same position is used by W(CO)₄ fragment in cluster B. It should be noted that the position occupied by the PtMe₂ fragment in 4a is not used by any PtMe₂ fragment in 5a. If this is the case, 5a must adopt the structure shown as conformer C in Figure 3: The second PtMe₂ fragment occupies the position between two bulky Cp* ligands. To avoid this severe steric crowding, in the real structure of 5a, each PtMe₂ fragment occupies the position between CO and Cp* ligands.

The tetrathiotungstate $[WS_4]^2$ ligand has been used for building up transition-metal sulfide clusters. However, the tetrathiometalates with organometallic fragments are still limited.⁸ To our knowledge, cluster 5 is the first example in which four organometallic fragments are connected by a tetrathiotungstate ligand.

References and notes

- Y. Jeannin, F. Sécheresse, S. Bernès, and F. Robert, *Inorg. Chim. Acta*, 198-200, 493 (1992), and references therein.
- M. Yuki, M. Okazaki, S. Inomata, and H. Ogino, Angew. Chem., Int. Ed. Engl., 37, 2126 (1998).
- 3 M. Yuki, M. Okazaki, S. Inomata, and H. Ogino, submitted for publication.
- Data for 3a: ¹H NMR (300 MHz, C₆D₆) δ 2.24 (s, 6H, ²J_{Pt-H} = 88 Hz, PtMe₂), 1.61 (s, 30H, Cp*). IR (KBr) 1984 cm⁻¹ (ν_{CO}). FAB MS (Xe, *m*-nitrobenzyl alcohol matrix) *m/z* 1052 (M⁺ Me). Anal. Found: C, 26.93; H 3.54%. Calcd for C₂₄H₃₆O₂PtRu₂S₄W: C, 27.05; H, 3.40%. For 4a: ¹H NMR (300 MHz, C₆D₆) δ 2.49 (s, 6H, ²J_{Pt-H} = 88 Hz, PtMe₂), 1.61 (s, 30H, Cp*). IR (KBr) 1959 cm⁻¹ (ν_{CO}). FAB MS (Xe, *m*-nitrobenzyl alcohol matrix) *m/z* 1052 (M⁺ Me). Anal. Found: C, 27.17; H 3.29%. Calcd for C₂₄H₃₆O₂PtRu₂S₄W: C, 27.05; H, 3.40%. For 5a: ¹H NMR (300 MHz, C₆D₆) δ 2.43 (s, 6H, ²J_{Pt-H} = 85 Hz, PtMe₂), 2.28 (s, 6H, ²J_{Pt-H} = 89 Hz, PtMe₂), 1.53 (s, 30H, Cp*). IR (KBr) 1963 cm⁻¹ (ν_{CO}). FAB MS (Xe, *m*-nitrobenzyl alcohol matrix) *m/z* 1176 (M⁺ 2Me 2CO). Anal. Found: C, 23.75; H 3.38%. Calcd for C₂₂H₃₆O₂PtRu₂S₄W: C, 24.19; H, 3.28%.
- 23.75; H 3.38%. Calcd for C_{2c}H₄₂O₂Pt₂Ru₂S₄W: C, 24.19; H, 3.28%.
 Crystallographic data for 4b: C_{2c}H₄₀O₂PtRu₂S₄W, M = 1093.93, orthorhombic, space group Pbca (variant No.61), a = 16.458(10) Å, b = 26.13(1) Å, c = 15.661(4) Å, V = 6736(4) Å³, Z = 8, D_c = 2.16 gcm³, μ(Mo-Kα) = 86.81 cm⁻¹. The structure was solved by Patterson methods and refined by full-matrix least-squares methods using teXsan. Hydrogen atoms were not located. All non-hydrogen atoms were refined anisotropically. 7731 unique reflections were collected by ω scan in the range 3°<20<55° and 3480 data with I > 2σ(I) were used in calculations. The final reliability factors converged R = 0.059 and R_w = 0.082.
- 6 M. J. Chetcuti, "Comprehensive Organometallic Chemistry II," ed by E. W. Abel, F. G. A. Stone, and G. Wilkinson, Pergamon Press, Oxford (1995), Vol. 10, Chap. 2.
- 7 Crystallographic data for $\mathbf{5a}$: $C_{26}H_{42}O_2Pt_2Ru_2S_4W$, M=1291.02, monoclinic, space group C2/c (variant No.15), a=15.069(9) Å, b=15.529(7) Å, c=16.542(7) Å, $\beta=95.69(4)^\circ$, V=3851(3) Å³, Z=4, $D_c=2.23$ gcm³, μ (Mo-K α) = 111.90 cm¹. The structure was solved by direct methods and refined by full matrix least-squares methods using teXsan. The carbon atoms of disorderd Cp* ligand were treated as two rigid groups. Hydrogen atoms were not located. All non-hydrogen atoms were refined anisotropically without disordered Cp* ligand, which was refined isotropically. 5622 unique reflections were collected by ω -2 θ scan in the range 3° <2 θ <6 0° and 3038 data with $I>3\sigma(I)$ were used in calculations. The final reliability factors converged R=0.059 and $R_w=0.099$.
- a) K. E. Howard, T. B. Rauchfuss, and S. R. Wilson, *Inorg. Chem.*, 27, 3561 (1988).
 b) P. A. Shapley, Z. Gebeyehu, N. Zhang, and S. R. Wilson, *Inorg. Chem.*, 32, 5646-5651 (1993).
 c) S. Ogo, T. Suzuki, and K. Isobe, *Inorg. Chem.*, 34, 1304 (1995).
 d) B. Zhuang, P. Yu, L. Huang, L. He, and J. Lu, *Polyhedron*, 13, 125 (1994).
 e) W. J. Evans, M. A. Ansari, J. W. Ziller, and S. I. Khan, *Organometallics*, 14, 3 (1995).
 f) J. Ruiz, V. Rodríguez, G. López, P. A. Chaloner, and P. B. Hitchcock, *J. Organomet. Chem.*, 493, 77 (1995).
 g) Y. Mizobe, M. Hosomizu, Y. Kubota, and M. Hidai, *J. Organomet. Chem.*, 507, 179 (1996).